Luteolin inhibits pancreatitis-induced acinar-ductal metaplasia, proliferation and epithelial-mesenchymal transition of acinar cells

نویسندگان

  • Xince Huang
  • Pravin Avinash Bhugul
  • Gang Fan
  • Tingting Ye
  • Shihao Huang
  • Shengjie Dai
  • Bicheng Chen
  • Mengtao Zhou
چکیده

Luteolin, a flavone, has been demonstrated to have anti‑cancer properties. In the current study, the effects of luteolin on certain carcinogenesis‑associated changes induced by pancreatitis, which are significant risk factors for pancreatic cancer, were investigated. Male six‑week‑old C57BL6 mice used in the current study were divided into three groups; the control group, acute pancreatitis group and luteolin group. Intra‑peritoneal injection of cearulein was performed in the acute pancreatitis group and luteolin group to induce acute pancreatitis whereas the luteolin group received intra‑peritoneal injection of luteolin. The control group received intra‑peritoneal injection of normal saline. Then, the expression of SOX9, phosphorylated (p‑) STAT3, p‑EGFR, cytokeratin‑19, Ki67 and N‑cadherin were determined by immunohistochemistry. Morphological changes of acinar cells were determined by hematoxylin and eosin staining. The mRNA expression of the epithelial‑mesenchymal transition markers CDH1, CDH2, Slug, Zeb1, EpCAM, ZO1, Vimentin, Snail and Twist was determined by reverse transcription‑quantitative polymerase chain reaction. It was identified that luteolin inhibits the formation of tubular complexes and ectopic expression of cytokeratin‑19 and luteolin also decreased proteins of SOX9, p‑STAT3 and p‑EGFR. In addition, luteolin inhibits proliferation and epithelial‑mesenchymal transition of acinar cells induced by acute pancreatitis. As tubular complex formation and ectopic expression of cytokeratin‑19 were two prominent characters of acinar‑ductal metaplasia, it was concluded that luteolin inhibits acinar‑ductal metaplasia induced by pancreatitis and also inhibits pancreatitis‑induced proliferation and epithelial‑mesenchymal transition of acinar cells. Acinar‑ductal metaplasia and proliferation have close associations with pancreatic carcinogenesis. It is suggested that luteolin has potential anti‑pancreatic carcinogenesis effects and merits further investigation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slug inhibits pancreatic cancer initiation by blocking Kras-induced acinar-ductal metaplasia

Cells in the pancreas that have undergone acinar-ductal metaplasia (ADM) can transform into premalignant cells that can eventually become cancerous. Although the epithelial-mesenchymal transition regulator Snail (Snai1) can cooperate with Kras in acinar cells to enhance ADM development, the contribution of Snail-related protein Slug (Snai2) to ADM development is not known. Thus, transgenic mice...

متن کامل

TGF-β1 promotes acinar to ductal metaplasia of human pancreatic acinar cells

Animal studies suggest that pancreatitis-induced acinar-to-ductal metaplasia (ADM) is a key event for pancreatic ductal adenocarcinoma (PDAC) initiation. However, there has not been an adequate system to explore the mechanisms of human ADM induction. We have developed a flow cytometry-based, high resolution lineage tracing method and 3D culture system to analyse ADM in human cells. In this syst...

متن کامل

Dicer Is Required for Maintenance of Adult Pancreatic Acinar Cell Identity and Plays a Role in Kras-Driven Pancreatic Neoplasia

The role of miRNA processing in the maintenance of adult pancreatic acinar cell identity and during the initiation and progression of pancreatic neoplasia has not been studied in detail. In this work, we deleted Dicer specifically in adult pancreatic acinar cells, with or without simultaneous activation of oncogenic Kras. We found that Dicer is essential for the maintenance of acinar cell ident...

متن کامل

Macrophage-secreted cytokines drive pancreatic acinar-to-ductal metaplasia through NF-κB and MMPs

In response to inflammation, pancreatic acinar cells can undergo acinar-to-ductal metaplasia (ADM), a reprogramming event that induces transdifferentiation to a ductlike phenotype and, in the context of additional oncogenic stimulation, contributes to development of pancreatic cancer. The signaling mechanisms underlying pancreatitis-inducing ADM are largely undefined. Our results provide eviden...

متن کامل

Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress.

Pancreatic acinar cells possess very high protein synthetic rates as they need to produce and secrete large amounts of digestive enzymes. Acinar cell damage and dysfunction cause malnutrition and pancreatitis, and inflammation of the exocrine pancreas that promotes development of pancreatic ductal adenocarcinoma (PDAC), a deadly pancreatic neoplasm. The cellular and molecular mechanisms that ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2018